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Hesam Azadjou 1, Michalina Błażkiewicz 2 , Andrew Erwin 1,3 and Francisco J. Valero-Cuevas 1,3,*

1 Alfred E. Mann Department of Biomedical Engineering, University of Southern California,
Los Angeles, CA 90089, USA; azadjou@usc.edu (H.A.); erwina@usc.edu (A.E.)

2 AWF · Department of Physiotherapy, Józef Piłsudski University of Physical Education in Warsaw,
00-968 Warsaw, Poland; michalinablazkiewicz@gmail.com

3 Division of Biokinesiology and Physical Therapy, University of Southern California,
Los Angeles, CA 90033, USA

* Correspondence: valero@usc.edu

Abstract: Quantifying the dynamical features of discrete tasks is essential to understanding athletic
performance for many sports that are not repetitive or cyclical. We compared three dynamical
features of the (i) bow hand, (ii) drawing hand, and (iii) center of mass during a single bow-draw
movement between professional and neophyte archers: dispersion (convex hull volume of their
phase portraits), persistence (tendency to continue a trend as per Hurst exponents), and regularity
(sample entropy). Although differences in the two groups are expected due to their differences in
skill, our results demonstrate we can quantify these differences. The center of mass of professional
athletes exhibits tighter movements compared to neophyte archers (6.3 < 11.2 convex hull volume),
which are nevertheless less persistent (0.82 < 0.86 Hurst exponent) and less regular (0.035 > 0.025
sample entropy). In particular, the movements of the bow hand and center of mass differed more
between groups in Hurst exponent analysis, and the drawing hand and center of mass were more
different in sample entropy analysis. This suggests tighter neuromuscular control over the more fluid
dynamics of the movement that exhibits more active corrections that are more individualized. Our
work, therefore, provides proof of principle of how well-established dynamical analysis techniques
can be used to quantify the nature and features of neuromuscular expertise for discrete movements
in elite athletes.

Keywords: archery; athletics; human movement; dynamic systems theory; phase space reconstruction;
Hurst exponent analysis; sample entropy

1. Introduction

Dynamical systems theory has provided multiple tools and techniques to investigate
athletic performance. By dynamics, we mean the time-varying interactions between the
person and environment while executing a task to different levels of performance [1]. Three
useful methods to quantify dynamical performance are its ‘phase portrait’ (a geometric
description of how system variables interact with each other over time), the ‘persistence’ of
the dynamics (the tendency to continue a current kinematic trend), and the ‘irregularity’ of
the dynamics (how fluid the dynamical control is).

Although dynamical techniques are common in applied mathematics and in biological
time series [2] and biomechanics [3,4], they have had more limited use in sports as they are
applied mostly to cyclical behavior like walking and running [5–8]. Here, we extend the
application of nonlinear dynamics analysis to the domain of discrete movements, focusing
on the intricate bow-draw movement.

Archery is an exemplary subject for our investigation due to its unique blend of physi-
cality, mental focus, and historical significance as the bow and arrow could be among the

Entropy 2023, 25, 1414. https://doi.org/10.3390/e25101414 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25101414
https://doi.org/10.3390/e25101414
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8452-6824
https://orcid.org/0000-0002-9587-8670
https://doi.org/10.3390/e25101414
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25101414?type=check_update&version=1


Entropy 2023, 25, 1414 2 of 14

earliest examples of complex projectile weaponry [9,10] and shooting arrows demand a
greater level of advanced executive functions within the brain when compared to tasks
involving spear-throwing [10]. The archer’s quest for mastery transcends the boundaries
of mere physical performance; it delves deep into the realms of cognition and motor con-
trol [11,12], and it demands athletes to gain focus and consistency in their movement [13].

In addition, prior studies of archery focus on electromyographic signals [14–17],
posture and stability [18,19], reaction times [20], or effects of eye dominance [21]. However,
they do not take a truly dynamical approach.

Here, we specifically study the dynamical features of bow-draw motions to quantify
how professional archers attain improved performance. By comparing the dynamics of
performance between professional and neophyte archers in the context of the bow-draw
movement, we aim to study the differences in motor control strategies and provide a proof
of principle for the application of nonlinear dynamics analysis in archery sports. Through
this interdisciplinary approach, we gain insights into archery mechanics and a broader
understanding of human motor control, focus, and cognitive processes during discrete
movements in sports.

We find professional archers exhibit movements with less dispersion in their motion
dynamics, likely due to more active corrections and more fluid dynamical control compared
to neophytes.

2. Materials and Methods
2.1. Participants

The research involved 14 professional archers and 14 neophytes (seven men and
women in each) (Table 1). Professional archers played for Poland’s national team, while the
neophytes were senior physical education students who had never shot a sports bow or
any other type of bow. The participants reported having no existing upper limb injuries
or balance disorders and had not undergone any major upper limb surgery. The study
was conducted according to the ethical guidelines and principles of the Declaration of
Helsinki. The study protocol was approved by the University Research Ethics Committee
(SEK 01-09/2020). In accordance with the emphasis on safety by the IRB, neophytes were
particularly fit individuals for whom the recommended neophyte draw weight of 30 lbs.
was not difficult. Also, the spirit of the project was to allow neophytes to, primarily, safely
perform the task. Therefore, we asked them to perform the bow-draw motion as they felt
most comfortable. Thus, for example, we did not control for eye dominance or ask them to
perform the task with full stabilization or viewfinder hardware, which would have proven
to be a distraction. Similarly, to further emphasize safety, they did not release the bow
string to prevent the string from stinging their bow forearm.

Table 1. Participant characteristics (mean ± SD).

Group Age
[Years]

Body Mass
[kg]

Height
[cm]

Training
History
[Years]

Draw
Weight
[lb]

Professionals
(N = 14) 23.7 ± 9.9 73.2 ± 16.5 175.7 ± 9.7 11.1 ± 7.9 36–40

Neophytes (N = 14) 23.5 ± 1.3 73.3 ± 16.7 176 ± 13.5 0 30

2.2. Experimental Procedure

This research was conducted by utilizing a 9-camera system (Vicon Motion Systems
Ltd, Yarnton, UK) operating at 100 Hz. A total of 34 markers were placed on the subjects
according to the full body Plug-In-Gait scheme (Figure 1). From these markers, we extracted
the 3D location of the Center of Mass (CoM), the bow hand (left arm), and the drawing
hand (right arm). The CoM was calculated as the centroid of all body parts, including both
hands. Each hand position was measured via markers placed on the dorsum, just below the



Entropy 2023, 25, 1414 3 of 14

head of the second metacarpal. After a warm-up, professionals performed two successful
shots, and neophytes performed one shot (two shots if the first one was unsuccessful) at the
target located 5 m from the platform. The shot cycle (Figure 1) consisted of the following
phases: A. Set-up, B. Draw, C. Aim, D. Release, and follow-through [22]. The set-up phase
(stage A) finishes when the bow hand is raised to the highest point before the drawing
hand moves backward. The draw phase (stage B) finishes when the string touches the face
of the archer. The Aim phase (stage C) finishes when the string moves forward from the
fingers (the release, stage D). The follow-through time stops when the archer first moves
either arm downwards from their end position. The starting point of recording is when
the drawing hand and the LASI (Left Anterior Superior Iliac Spine) are at the same height
(Figure 1).

The professional archers performed well-aimed shots at the center of the target (A, B,
C, and D of the shot cycle, Figure 1), while the neophytes drew the string without taking
the arrow down from the bow (for safety reasons, they only performed phases A, B, and
C of the shot cycle before reversing the movement back to A, Figure 1). The professional
archers had their bow with a draw weight set between 36 and 40 lb. For neophytes, the
draw weight was set to 30 lb as our consultant coaches recommended using bows with
a draw weight of no more than 30 pounds for neophytes. Before the recorded trials, the
neophytes did not learn the technique themselves, but instead watched a professional
archer perform the bow draw. Our analysis for each participant was carried out on the first
attempt performed without marker occlusion.

Figure 1. Motion capture stick figure of a professional participant during the shot cycle: (A) Set-up
phase, (B) Draw phase, (C) Aim phase, (D) Release phase (not included in the analysis and not done
by neophytes).

2.3. Data Preprocessing
2.3.1. Kinematics Resampling and Normalization

Using phase space reconstruction and Hurst exponent analysis requires the signal
to have a large enough number of points relative to their sampling frequency. Given our
sampling frequency of 100 Hz, the lengths of the bow-draw movements lasting at most
4.2 s (for professionals) and 9.7 s (for neophytes) did not provide the same number of
points per movement. Therefore, we preprocessed and concatenated the signals as follows:
(I) The signals were resampled to obtain 1000 samples for the representative movement by
each participant. This avoided undersampling (removing information from) the longest
(i.e., slowest) movement, which had 970 samples. (II) Then, the resampled signals were
normalized by the maximum magnitude value and demeaned. (III) To make the movements
continuous, every other time series was reversed; therefore, the time series could be seen
as a cyclical movement for the phase space reconstruction and Hurst exponent analysis.
(IV) Finally, a low-pass filter was applied to prevent impulsive jumps between concatenated
time series ( fc = 0.66 normalized frequency).
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2.3.2. Creation of a 1D Time Series for the CoM, Drawing Hand, and Bow Hand

Phase space reconstruction and Hurst exponent analysis both require a 1D time series.
Thus, we applied principal component analysis (PCA) to each body part’s 3D time series
to reduce the dimensionality (See Figure 2). PCA is a widely employed technique in the
fields of biomechanics [23,24] and sports [25,26] to project data into lower dimensions
efficiently. The variance explained by the first PC of all body parts is shown in Table 2.
In Appendix A, we further analyze the first PC for each body part to determine if they
exhibited nonstationary, nonlinear, or chaotic behavior.

Figure 2. Preprocessed and normalized time series (of each group) of the Cartesian coordinates of the
center of mass (CoM) and their projection onto their first principal component (PC). We resampled
the bow-draw movement from all participants (which could have taken a different amount of time)
to have 1000 samples each and then concatenated them to create the time series for each group.
Considering the number of participants in each group (N = 14), the concatenated time series has
14,000 samples for neophytes and professionals.

Table 2. Percentage of variance explained by the first PC for each body part.

Body Part Professionals Neophytes

Bow Hand 64.3 68.6
Drawing Hand 76.1 74.9
Center of Mass 56.5 62.5

2.4. Phase Space Reconstruction
2.4.1. Time Delay and Embedding Dimension

The modeling and visualizing of time-series dynamics require proper state space
reconstruction from available data to successfully estimate the invariant properties of the
embedded attractor. Therefore, an appropriate time delay (τ) and embedding dimension
(D) should be selected for the phase space reconstruction [27]. In the case of this paper, time-
delayed embedding has been used to embed a signal into higher-dimensional space. To
estimate the optimal time delay value, the Average Mutual Information (AMI) method was
used for the first PC of each body part to implement the uniform multivariate method [28].
The criterion used for choosing the time delay was to find the first local minima of the AMI
function for all body parts in both groups, and the maximum time lag (τmax) was set to
be 1000 samples (the length of one participant’s time series). The dimension was found
using the False Nearest Neighbor (FNN) method, which computes the percentage of false
nearest neighbors for multidimensional input time series as a function of the embedding
dimension [29]. All three first PCs showed a dimension of three.
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2.4.2. Convex Hull of Phase Portrait

For the prepared data, by applying the optimal time delay (τ) and the embedding
dimension (D = 3), a convex hull was calculated for each PC in both groups (Figure 3). The
convex hull’s volume was used to compare the phase space domains. Phase space volumes
were compared within the first PC of the three body parts and between groups (at the level
of the same body part).

Figure 3. Steps for: (A) Plotting the phase portrait for the 1D time series of the CoM using the time-lag
method, (B) Fitting the convex hull to the phase space trajectories, and (C) Removing the trajectories
from the convex hulls to generate Figure 5c.

2.5. Hurst Exponent Analysis

The Hurst exponent (H) quantifies the time series’ long-term memory by examining
the auto-correlations within the series and how these correlations diminish as the time lag
between data points increases [30,31]. H represents the relative tendency of a time series to
have a mean-reverting or trending pattern. The Hurst exponent can be between 0 and 1,
categorizing the series into three types: (1) H > 0.5, which shows a persistent series. The
closer the H value to 1, the stronger the persistence. (2) H = 0.5, which shows a Brownian
motion (i.e., random motion). (3) H < 0.5, which shows an anti-persistent series. The closer
the H value is to 0, the stronger the anti-persistence is. Taken together, H > 0.5 or H < 0.5
shows that a higher value comes after a high value, and vice versa [32]. To calculate the
Hurst exponent, we used the Rescaled Range (R/S) Analysis [30] . We define X(t) as the
first PC with the length of N, and X(i) is the ith observation in the PC. R(n) is the range of
the series over a segment of length n, defined as (Equation (1))

R(n) = max
i=1,...,N−n+1

X(i + n− 1)− min
i=1,...,N−n+1

X(i) (1)

S(n) is the standard deviation of the PC over the same segment, defined as: Equation (2):

S(n) =

√√√√ 1
n− 1

i=n

∑
i=1

(X(i)− µn)2 (2)

where µn is the mean of the series over the segment of length n. The R/S statistic is defined
as Equation (3):

R/S(n) =
R(n)
S(n)

(3)

The Hurst exponent H is then estimated using the log(R/S) versus log(n) plot as follows:
Equation (4):

log(R/S(n)) = C + H log(n). (4)

where C is a constant and H is the Hurst exponent. All calculations were performed using
MatLab software, version MATLAB R2023a.
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2.6. Sample Entropy

Sample entropy (SampEn) is a modified version of Approximate Entropy (AppEn)
that measures complexity or irregularity in time-series data as AppEn does, but it does not
consider self-similarity. For a given embedding dimension (m), tolerance (r), and data length
(length(x) = N), we define a temple vector of length m to be Xm(i) = xi, xi+1, ..., xi+m−1

and a Euclidian distance function dij =
√

∑m
k=1(Xm(i)− Xm(j))2, then the SampEn is as in

Equation (5)

SampEn = − log
(

C(m, r)
C(m + 1, r)

)
(5)

In which C is a count function as in Equation (6)

C(i, r) =
N−(m−1)

∑
j=1,j 6=i

Θ(r− dij), (6)

and Θ is the Heaviside step function.
Since C(m, r) is always smaller than or equal to C(m + 1, r), the SampEn will always

be non-negative. A smaller value of SampEn indicates more regularity (less complexity) in
the data.

3. Results

The mean trajectories of all body parts were plotted, and the area of ±standard devi-
ations was shaded (Figure 4). Trajectories generally reveal a difference between the two
groups. To investigate dynamical differences between professionals and neophytes, phase
portraits were plotted for the first PC of the concatenated time series (Figure 5).

All body parts show less dispersed dynamic states (i.e., tighter control) in professionals
compared to neophytes. We used the volumes of the convex hulls to measure the dispersion
for dynamic states of participants’ control during the bow-draw motion (Table 3). Based on
the volumes, all three body parts have smaller dispersion in professionals, and the CoM
has the greatest difference.

Figure 4. Normalized Cartesian coordinates of the hands (a,b) and CoM (c) for the single bow-draw
motion for all participants. The asterisks indicate the start of the motion, and the shaded areas
represent standard deviations from the mean presented by the solid line.
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Figure 5. Convex-hulls of the phase portraits for the bow hand (a), the drawing hand (b), and CoM
(c) of the professionals and neophytes. There is one convex hull per group, as each phase portrait
was obtained from the concatenated time series from all subjects in that group. The volume of each
convex hull is shown in Table 3.

Table 3. Convex hull volumes (normalized units) for the phase portraits of each body part. * denotes
statistical significance with p < 0.01.

Body Part Professionals Neophytes

Bow Hand 7.0 < * 8.3
Drawing Hand 7.3 < * 8.0
Center of Mass 6.3 < * 11.2

Hurst exponent values indicate a more persistent drawing behavior in the bow hand
and CoM in professionals than neophytes (see Figure 6). A time series with 0.5 < H < 1
is considered persistent, and the closer to one the H value is, the more persistent the time
series is. All of the series in this paper were persistent (Table 4), and the H values for
the professionals were smaller in all body parts for the professionals compared to the
neophytes, but bigger differences were for the bow hand and the CoM, which shows a less
persistent control (i.e., more active correction) for the professionals that makes their bow
draw more distinctive.

Figure 6. The slope of the fitted line on the calculated data points from the logarithm of rescaled
range (R/S) vs. the logarithm of time lags is equal to the Hurst exponent.
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Table 4. Hurst exponent (H) values for each body part. * denotes statistical significance with p < 0.01.

Body Part Professionals Neophytes

Bow Hand 0.71 < * 0.79
Drawing Hand 0.85 < * 0.86
Center of Mass 0.82 < * 0.86

SampEn values were smaller for all body parts in the professionals compared to
neophytes, with bigger differences in the drawing hand and center of the mass, indicating
that professionals have a less regular drawing style.

Each population (professional or neophyte) is characterized by a single concatenated
time series of its participants. To validate our results, we employed bootstrapping to gener-
ate 1000 resampled datasets from each population to estimate the underlying distribution
of the analyzed signals. Bootstrapping is, therefore, a computational means to enhance
the power of statistical tests by simulating data collection in many more participants with
similar simulated behavior as the actual participants. We subsequently repeated our anal-
yses and used t-tests to estimate the statistical robustness of differences in test statistics
among the resampled groups. Remarkably, except for the bow hand’s sample entropy (i.e.,
1 out of 9 test statistics), all other comparisons yielded statistically significant differences
(p-value < 0.01), strongly suggesting that the differences in the features from the actual
professional and neophyte participants are indeed real, despite the limited number of
subjects.

4. Discussion

As expected from their skill levels, there were differences in how professional and
neophyte archers executed the bow-draw motion. However, our contribution is to be able
to quantify the dynamical features that can capture those differences for this discrete (i.e., non-
cyclical) bow-draw task. We show this from a variety of perspectives that include qualitative
between-groups differences in the normalized 3D trajectories (Figure 4), and quantitative
differences illustrated by dynamical time-series analyses: phase portraits (Figure 5) and
Hurst exponents (Figure 6 and Table 4) and sample entropy (Table 5).

Table 5. Sample Entropy values for each body part. * denotes statistical significance with p < 0.01.

Body Part Professionals Neophytes

Bow Hand 0.024 > 0.023
Drawing Hand 0.020 > * 0.014
Center of Mass 0.035 > * 0.025

It is known that postural stability is a trainable attribute that can be enhanced through
consistent practice, as demonstrated in studies by Jagdhane et al. (2016) [33] and Paillard
(2017) [34]. In archery, specifically, an examination of postural balance during the aiming
phase has revealed that better performance in professional archers, compared to their
less-skilled counterparts, can be attributed to reduced postural sway characteristics. Our
findings of lower dispersion (i.e., less variability and thus reduced sway) in the movement
of the center of mass and hands for the professionals compared to the neophytes agree with
those findings [18–20,35,36]. Our results critically extend those statistically based studies
by revealing that differences in the dynamics of bow-draw motion between professional
and neophyte archers can be attributed to different motor control strategies. This is because
dynamical features such as smaller state space dispersion, more active corrections (less
persistence in Hurst exponent analysis), and less regularity (in sample entropy) also have
control of theoretical implications and interpretations.

Moreover, this work also serves as proof of principle that such dynamical time-series
analyses can be applied to discrete athletic movements. Historically, dynamical systems
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analysis has been applied mostly to continuous motions such as quiet stance [37], gait
[38,39], postural control [40] and running [41]. This is particularly useful in sports because
many sports center around discrete actions. We note this because, before this work, most
of these analyses were applied to inherently cyclical sports such as walking, running, and
swimming.

Our preprocessing of their time series made applying these methods to the discrete
bow draw possible. In particular, we first resampled, normalized, and demeaned the
signals to prevent bias due to participant anatomy and movement duration differences. We
then concatenated each instance of a movement from each participant group (reversing
every other movement). This created a continuous time series amenable to these analyses
that represented each participant while producing a balanced and long-enough time series
representative of each group. This preprocessing of the time series from individuals’ motion
into a single 1D time series provides only one value for the convex hull’s volume and Hurst
exponent for each group. Nevertheless, this single number represents each group and lets
us compare them as a group. Comparisons of individual subjects were not our goal.

Before interpreting our results, it is important to state some particular limitations of our
project. As shown in Figure 1, only the experts completed the task by releasing the arrow
(stage D of the shot cycle). This was imposed for the sake of the safety of the neophytes,
as the release phase can be dangerous. Therefore, neophytes only reached the Aim phase
(stage C) before relaxing. However, this does not affect our analysis of the bow-draw
movement as the Aim phase is the end of the same. In addition, before performing the bow
draw, the neophytes’ training consisted only of watching a professional archer perform the
bow draw and release in silence. Moreover, they did not receive additional instruction, and
we only analyzed their first motion for which markers were least occluded. The first trial
analyzed only a truly naïve shot. Offering instruction would have added to the confound
of learning, which was not the goal of our study. Although we expected this lack of formal
instruction could result in greater inconsistency in the neophytes than in the professionals,
this did not wash out-group differences, as demonstrated by Tables 3 and 4. In addition,
the purely visual exposure to the task before their bow-draw attempts emphasized learning
by demonstration in the neophytes. The consistency we found in their movements (see
Table 4) may come from their perception of the most salient visual features of the bow draw,
as opposed to the details of motor performance of the task. Regardless of whether the task
was being imitated at a perceptual or motor level by the neophytes (i.e., we cannot espouse
either at this point), we find differences in the motor performance of the task across groups
as described below. Lastly, we did not study, and therefore did not test for, the difference
in dynamic performance between the sexes. All participants could easily draw the 30 lb.
draw weight, and the average and standard deviation in weight and height between the
two groups were similar (except for a greater standard deviation in the neophyte height).
Future work that is properly powered for this comparison can assess differences in motor
control between the sexes in this sport.

Phase portraits are geometrical representations of the transitions in the dynamical
states of a system. Therefore, the volume of their convex hull represents the breadth
(dispersion) of its dynamics. Professionals exhibited phase portraits with smaller volumes,
indicating that the underlying dynamics of their motion were controlled to have less
dispersion—which can be interpreted as having tighter control over the range of positions,
velocities, and accelerations of their body parts.

A Hurst exponent of 0.5 represents a truly random Brownian motion. A value closer
to 1.0 then quantifies ‘persistence’ in a time series (i.e., the tendency to continue the current
trend of a movement). The Hurst exponents we found show that professionals are less
persistent as a group (closer to 0.5) compared to the neophytes (closer to 1.0). This can be
interpreted as professionals implementing more frequent and minute corrections, resulting
in shorter movements.

This study utilizes Sample Entropy (SampEn), a modified adaptation of Approximate
Entropy, as a quantitative metric for gauging complexity and irregularity within time
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series while circumventing the influence of self-similarity inherent to Approximate Entropy.
Higher SampEn values indicate more complexity, signifying lower regularity within the
time series. Our comprehensive analysis consistently reveals that professional archers
exhibit higher sample entropy values across all three body parts under scrutiny, indicating
more complexity than neophyte archers. The higher sample entropy values observed for
the professional archers can manifest from a heightened adeptness in orchestrating a fluidic
and precisely directed bow-draw motion. We conclude that professional archers exhibit
tighter and finer control over their discrete bow-draw movements’ more fluid (i.e., less
regular) dynamics. Although differences between these groups were expected, our work
provides proof of principle of how well-established dynamical analyses can be used to
quantify and compare the dynamics of discrete movements in sports.
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Appendix A

Appendix A.1. Further Analysis of First PC

For completeness and to inform our interpretation of the results, we also tested the first
PC of the time-series kinematics for nonstationary, nonlinear, and chaotic behavior [42–45].

Appendix A.1.1. Nonstationarity Test

A time series is nonstationary if its distribution changes across time. In other words,
the time series’ mean, variance, and autocovariance must be time-independent to mark a
signal as nonstationary. We used the nonstationary test method in [46]. Figure A1 shows a
quantile-quantile plot of the quantiles of the first PCs versus the theoretical quantile values
from a normal distribution for nonstationary tests. When the signal is nonstationary, the
Q-Q plot will deviate from a straight line (normal distribution), and the points will not
be distributed symmetrically around it, indicating that the data distribution changes over
time. All first PCs were nonstationary.
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Figure A1. The quantile-quantile plots for the professionals (a–c) and the neophytes (d–f).

Appendix A.1.2. Nonlinearity Test

Surrogate data of an observed signal is a time series with the same linear statistical
properties as in the observed signal [47]. The surrogate data test method is based on
statistical hypothesis testing [48] to evaluate if it is nonlinear.

First, since all the series were nonstationary, we generated surrogate data using the
Amplitude Adjusted Truncated Fourier Transform (AATFT) method [49]. Next, we selected
the nonlinear version of autocorrelation statistics, AMI with m = 1, as discriminate statistics.
Finally, we considered the null hypothesis (H0) as AMI(m=1) = AMISUR(m=1), which
checks if the observed time series is generated from a linear stochastic process possibly
undergoing a nonlinear static transform [50]. Here, AMI [51,52] played a role as the
discriminating statistic, which is a number that quantifies some aspect of the time series. If
this number differs from the observed data, then the null hypothesis can be rejected. All
first PCs were nonlinear with a confidence level of 99%.

Appendix A.1.3. Detection of Chaos

The largest Lyapunov exponent was computed using an algorithm from Wolf, Swift,
Swinney, and Vastano [53]. The idea of using Lyapunov exponents to identify chaos in a
system is based on the assumption that if the average distance between two points increases
at an exponential rate, then the system is sensitive to a change in initial conditions, and
the value of the Lyapunov exponent is greater than zero. Lyapunov exponents (λ) can be
defined using Equation (A1),

d(t) = Ceλt. (A1)

where d(t) is the average divergence at time t and C is a constant that normalizes the initial
separation. Therefore, the existence of a positive Lyapunov exponent is often considered a
necessary and sufficient condition for the presence of chaos in the system. The CoM’s first
PC had a positive Lyapunov exponent, and both hands had zero Lyapunov exponents (see
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Table A1). Therefore, only the CoM in both groups had chaotic behavior. All values are
calculated for d(t) = 0.1.

Table A1. Lyapunov exponent values for each body part.

Body Part Professionals Neophytes

Bow Hand 0 0
Drawing Hand 0 0
Center of Mass 22.1 20.2
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